COST ENGINEERING OF PIPELINES FOR FLUID TRANSPORT

by

Engr. Otis Anyaeji B.Sc.MechE, FNSE, F. Val, FCostE, AEcon

@ the

2011 NATIONAL CONFERENCE OF INSTITUTE OF APPRAISERS AND COST ENGINEERS (a Division of the Nigerian Society of Engineers)

Holding at

Raw Materials, Research and Development Council Auditorium, Aguiyi Ironsi Road, Maitama, Abuja

SEPTEMBER 20, 2011
PIPELINES

- Pipelines are made up of sections of line pipes welded together.
- They are generally the most economic way to transport large quantities of fluid and other products over land.
- Compared to other means of transportation, they have lower cost per unit and higher capacity.

TYPES OF PIPELINE - BY FUNCTION

- Flow Lines
- Gathering Lines
- Transmission Lines
- Distribution Lines
- Service Lines
Nigerian pipelines accounts for 0.47% of the world’s pipeline network
ALTERNATIVES TO PIPELINES

- Road Transportation
- Rail Transportation
- Sea Transportation
- Air transportation
FLUID PRODUCTS YOU CAN TRANSPORT USING PIPELINE.

- Crude Oil
- Natural gas
- Refined Hydrocarbon Products
- Bio fuels
- Hydrogen
- Water
- Beverages etc.
Cost engineering is concerned with the application of scientific principles and techniques to problems of cost estimating, cost control, business planning and management science.
Cost estimating is a well-formulated prediction of the probable cost of a project, operation or any activity.

For a project, cost estimates are improved and updated as the project moves from feasibility studies to detailed engineering/design.

The key determinates of pipeline construction costs are:
- Pipeline Diameter
- Pipeline length
- Operating pressure
CAPEX

Other factors are:
- Terrain
- Climate
- Local Labour Cost
- Safety/Environmental Regulations
- Population Density and Right of Way (ROW)
CAPEX-MAJOR COST COMPONENTS

ONSHORE CONSTRUCTION

- Linepipe
- Freight (Ocean and Overland)
- Miscellaneous materials (Valves, fittings, etc)
- Cathodic Protection (CP)
- Coatings (FBE, 3-layer PE)
- Compressor/Pump Stations
- Metering Station
- Communication Infrastructure/Equipment
- Insurance
- Construction (Survey & inspection, ROW, hauling & stringing, laying, special crossings, etc)
- Project management
- Engineering/Design
- Expected completion time
CAPEX-MAJOR COST COMPONENTS
OFFSHORE CONSTRUCTION

- Linepipe
- Freight (Ocean and overland)
- Miscellaneous (buckle arrestors, tie-ins, anodes, valves etc)
- Insurance
- Construction (survey, trenching, installation, shore crossings etc)
- Coating (concrete, corrosion)
- Project management
- Cathodic Protection
- Engineering/Design
- Expected completion time
OPERATIONAL EXPENDITURE (OPEX) / MAINTENANCE COST

OPEX

- Fuel cost (for Compressor/Pump and Metering Stations) and other consumables
- Other Utility cost
- Operating staff cost
- Land lease cost, if applicable
- Insurance and taxes

MAINTENANCE COST

- Inspection cost
- Labour cost
- Equipment/Material replacement and repair cost
Cost control involves the use of special techniques in controlling cost associated with a project, operation or any activity.

Below are some cost controlling techniques during project construction phase:

- Planning and budgeting
 - As a baseline guild.
- Keeping track of cost
 - To monitor project cash flow
- Effective time management
 - To keep project within budget
- Project change control
 - To manage anticipated or possible changes to scope
- Use of end value
 - For reliable evaluation of work progress
Below are some cost controlling measures during operations and maintenance phase:

- Use of energy efficient equipment
- Efficient use of utilities and consumables
- Preventive maintenance approach to facility/asset management
Two NIPP projects with different cost factors would be considered as a case study.

This case study considered only the CAPEX of the pipeline project.

Cost factors considered:
- Diameter
- Length
- Onshore/offshore
- ROW
NIPP CASE STUDY

<table>
<thead>
<tr>
<th>COST FACTOR</th>
<th>PROJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ihovbor</td>
</tr>
<tr>
<td></td>
<td>Calabar</td>
</tr>
<tr>
<td>Diameter (inches)</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Length (KM)</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>107</td>
</tr>
<tr>
<td>Operating pressure (Bar)</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Terrain</td>
<td></td>
</tr>
<tr>
<td>Onshore/Offshore</td>
<td>Onshore</td>
</tr>
<tr>
<td></td>
<td>Onshore/offshore</td>
</tr>
<tr>
<td>Climate</td>
<td>Same</td>
</tr>
<tr>
<td>Local labour cost</td>
<td>Same</td>
</tr>
<tr>
<td>Safety/Environmental laws</td>
<td>Same</td>
</tr>
<tr>
<td>Population density</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>ROW Issue</td>
<td>Difficult</td>
</tr>
<tr>
<td></td>
<td>Ok</td>
</tr>
<tr>
<td>Total Project Cost</td>
<td>$20.4 million</td>
</tr>
<tr>
<td></td>
<td>$151.8 million</td>
</tr>
</tbody>
</table>
NIPP CASE STUDY

Pipeline Project Cost

- Engineering: $0.65
- Procurement: $12.3
- Construction: $63.8

Cost in $(million)
The CAPEX of Calabar project is higher than the Ihovbor project by 86.6%.

Cost factors – Diameter, Length, Onshore/Offshore and ROW;

- Pipeline diameter of Calabar project is 24 inch while Ihovbor project is 18 Inch.
- The length of Calabar project is greater by 74.4 %.
- Calabar project has onshore and offshore elements.
- Though ROW acquisition cost for Ihovbor was more because of higher population density, other factors (diameter, length & onshore/offshore) increased the total cost of Calabar project.
SUMMARY

- The total cost of fluid transportation using a pipeline is the sum of CAPEX and OPEX/Maintenance cost, and this is calculated considering the entire life cycle of the pipeline.
- The CAPEX of a pipeline project is a function of key cost factors.
- The impact of key cost factors are less significant in OPEX/Maintenance.
- Cost estimations are important for economic and investment decision.